Article

Impact of Iron Deficiency in Heart Failure

Permissions
Permissions× For commercial reprint enquiries please contact Springer Healthcare: ReprintsWarehouse@springernature.com.

For permissions and non-commercial reprint enquiries, please visit Copyright.com to start a request.

For author reprints, please email rob.barclay@radcliffe-group.com.
Average (ratings)
No ratings
Your rating

Abstract

A satellite symposium at the 2014 European Society of Cardiology (ESC) congress discussed the importance of iron deficiency (ID) in heart failure (HF). ID is the main cause of anaemia and is observed in almost 50 % of HF patients in Europe and up to 80 % of patients in Asia. ID is an independent factor associated with reduced exercise capacity, reduced quality of life (QoL) and poor outcomes in HF. The importance of ID in HF is reflected in the fact that the current ESC Guidelines for HF recognise ID as a co-morbidity in HF for the first time, and recommend routine diagnosis and monitoring for ID based on iron parameters. Intravenous (i.v) administration of ferric carboxymaltose (FCM) was considered as a possible treatment option according to the findings of the Ferric Carboxymaltose Assessment in Patients With IRon Deficiency and Chronic Heart Failure (FAIR-HF) clinical study, which showed that treatment with FCM in HF patients with ID improves symptoms, exercise capacity and QoL. These findings were confirmed by the recent Ferric CarboxymaltOse evaluatioN on perFormance in patients with IRon deficiency in coMbination with chronic Heart Failure (CONFIRM-HF) study, which demonstrated that, in symptomatic patients with chronic HF and ID treatment with i.v. FCM over one year resulted in sustainable improvements in exercise capacity, symptoms and QoL, and was associated with a reduced risk of hospitalisations due to worsening HF.

Disclosure:Josep Comin-Colet has received consulting fees from Vifor Pharma and was a member of the FAIR-HF and CONFIRM-HF steering committees. Stefan Anker has received honoraria for consultancy, lectures, clinical trial committee work and/or trial adjudication work as well as he received research grants from Vifor Pharma. Carolyn SP Lam has received unrestricted research grants and honoraria from Vifor Pharma. Piotr Ponikowski has received honoraria from Vifor Pharma as a member of the FAIR-HF and CONFIRM-HF steering committees; consultancy and speakers bureau from Vifor Pharma and Amgen Inc; and a research grant from Vifor Pharma.

Received:

Accepted:

Support:Support is indicated in the editorial process box above.

Copyright Statement:

The copyright in this work belongs to Radcliffe Medical Media. Only articles clearly marked with the CC BY-NC logo are published with the Creative Commons by Attribution Licence. The CC BY-NC option was not available for Radcliffe journals before 1 January 2019. Articles marked ‘Open Access’ but not marked ‘CC BY-NC’ are made freely accessible at the time of publication but are subject to standard copyright law regarding reproduction and distribution. Permission is required for reuse of this content.

HF has a significant impact on QoL that is worse than the impact of other chronic diseases, particularly in terms of physical function.1 HF is characterised by exercise intolerance, fatigue and dyspnoea, and is classified according to severity in New York Heart Association (NYHA) classes I–IV, where Class I is no limitation of physical activity and Class IV is the inability to undertake any physical activity without discomfort.2 An emerging problem in HF is ID. ID is prevalent among patients with HF; in a recent international pooled cohort study (n=1,506), ID (defined as serum ferritin <100 µg/L or <299 µg/L if transferrin saturation [TSAT] <20 %) was found in 50 % of the total patient population. ID is the commonest cause of anaemia, but even in the absence of anaemia, ID was present in 45.6 % of patients (see Figure 1).3 Disease severity, assessed by NYHA class and N-terminal of pro-brain natriuretic peptide (NT-proBNP) levels, proved to be powerful and independent predictors of a disordered iron status. Furthermore, ID has been found to be an independent factor associated with reduced exercise capacity,4 reduced QoL5,6 and poor outcome.3

In 2012, the ESC Guidelines for the diagnosis and treatment of acute and chronic HF recognised ID as a co-morbidity in HF for the first time and recommended diagnosis of ID based on iron parameters in all patients suspected of having HF.2,7 Furthermore, the guidelines now detail the mechanism of action of iron in muscle function (and therefore the explanation for deficiency-related pathology and onset of symptoms in HF independent of the pro-erythropoietic function of iron); the need for routine monitoring for ID; and the beneficial effects on symptoms,

Prevalence of Iron Deficiency in Chronic Heart Failure

Article image

physical performance and QoL of treating ID with intravenous (i.v) ferric carboxymaltose (FCM). Based on the findings of the Ferric Carboxymaltose Assessment in Patients With IRon Deficiency and Chronic Heart Failure (FAIR-HF) study, which found that treatment with i.v. FCM in iron deficient patients with chronic HF improves symptoms, exercise capacity and QoL irrespective of whether anaemia was present or not. FCM is now considered as a possible treatment option in the current ESC Guidelines for HF.2,7,8 In conclusion, ID is a significant burden in HF and merits further investigation.

References

  1. Lesman-Leegte I, Jaarsma T, Coyne JC, et al., Quality of life and depressive symptoms in the elderly: a comparison between patients with heart failure and age- and gender-matched community controls, J Card Fail, 2009;15:17–23.
    Crossref | Pubmed
  2. McMurray JJ, Adamopoulos S, Anker SD, et al., ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC, Eur Heart J, 2012;33:1787–847.
    Crossref | Pubmed
  3. Klip IT, Comin-Colet J, Voors AA, et al., Iron deficiency in chronic heart failure: an international pooled analysis,
    Am Heart J, 2013;165:575–82 e3.
    Crossref | Pubmed
  4. Jankowska EA, Rozentryt P, Witkowska A, et al., Iron deficiency predicts impaired exercise capacity in patients with systolic chronic heart failure, J Card Fail, 2011;17:899–906.
    Crossref | Pubmed
  5. Comin-Colet J, Enjuanes C, González G, et al., Iron deficiency is a key determinant of health-related quality of life in patients with chronic heart failure regardless of anaemia status, Eur J Heart Fail, 2013;15:1164–72.
    Crossref | Pubmed
  6. Enjuanes C, Klip IT, Bruguera J, et al., Iron deficiency and health-related quality of life in chronic heart failure: results from a multicenter European study, Int J Cardiol, 2014;174:268–75.
    Crossref | Pubmed
  7. McMurray JJ, Adamopoulos S, Anker SD, et al., ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC, Eur J Heart Fail, 2012;14:803–69.
    Crossref | Pubmed
  8. Yeo TJ, Yeo PS, Ching-Chiew Wong R, et al., Iron deficiency in a multi-ethnic Asian population with and without heart failure: prevalence, clinical correlates, functional significance and prognosis, Eur J Heart Fail, 2014;16:1125–32.
    Crossref | Pubmed
  9. Zijp IM, Korver O, Tijburg LB, Effect of tea and other dietary factors on iron absorption, Crit Rev Food Sci Nutr, 2000;40:371–98.
    Crossref | Pubmed
  10. Finberg KE, Heeney MM, Campagna DR, et al., Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA), Nat Genet, 2008;40:569–71.
    Crossref | Pubmed
  11. An P, Wu Q, Wang H, et al., TMPRSS6, but not TF, TFR2 or BMP2 variants are associated with increased risk of iron-deficiency anemia, Hum Mol Genet, 2012;21:2124–31.
    Crossref | Pubmed
  12. Andrews NC, Disorders of iron metabolism, N Engl J Med, 1999;341:1986–95.
    Crossref | Pubmed
  13. Jankowska EA, von Haehling S, Anker SD, et al., Iron deficiency and heart failure: diagnostic dilemmas and therapeutic perspectives, Eur Heart J, 2013;34:816–29.
    Crossref | Pubmed
  14. Ganz T, Hepcidin and its role in regulating systemic iron metabolism, Hematology Am Soc Hematol Educ Program, 2006;29–35, 507.
    Crossref | Pubmed
  15. Zhang AS, Enns CA, Molecular mechanisms of normal iron homeostasis, Hematology Am Soc Hematol Educ Program, 2009;207–14.
    Crossref | Pubmed
  16. Oexle H, Gnaiger E, Weiss G, Iron-dependent changes in cellular energy metabolism: influence on citric acid cycle and oxidative phosphorylation, Biochim Biophys Acta, 1999;1413:99–107.
    Crossref | Pubmed
  17. Haas JD, Brownlie T 4th, Iron deficiency and reduced work capacity: a critical review of the research to determine a causal relationship, J Nutr, 2001;131:676S–88S; discussion 688S–90S.
    Pubmed
  18. Dallman PR, Iron deficiency: does it matter?, J Intern Med, 1989;226:367–72.
    Crossref | Pubmed
  19. Yeo TJ, Yeo PS, Sim DKL, et al., Functional iron deficiency in heart failure with preserved versus reduced ejection fraction, J Am Coll Cardiol, 2014;63(12 S):A778.
    Crossref
  20. Krum H, Jelinek MV, Stewart S, et al., 2011 update to National Heart Foundation of Australia and Cardiac Society of Australia and New Zealand Guidelines for the prevention, detection and management of chronic heart failure in Australia, 2006, Med J Aust, 2011;194:405–9.
    Pubmed
  21. Jankowska EA, Kasztura M, Sokolski M, et al., Iron deficiency defined as depleted iron stores accompanied by unmet cellular iron requirements identifies patients at the highest risk of death after an episode of acute heart failure, Eur Heart J, 2014;35:2468–76.
    Crossref | Pubmed
  22. Anker SD, Comin Colet J, Filippatos G, et al., Ferric carboxymaltose in patients with heart failure and iron deficiency, N Engl J Med, 2009;361:2436–48.
    Crossref | Pubmed
  23. Kao DP, Kreso E, Fonarow GC, Krantz MJ, Characteristics and outcomes among heart failure patients with anemia and renal insufficiency with and without blood transfusions (public discharge data from California 2000-2006), Am J Cardiol, 2011;107:69–73.
    Crossref | Pubmed
  24. Swedberg K, Young JB, Anand IS, et al., Treatment of anemia with darbepoetin alfa in systolic heart failure, N Engl J Med, 2013;368:1210–9.
    Crossref | Pubmed
  25. Ghali JK, Anand IS, Abraham WT, et al., Randomized double-blind trial of darbepoetin alfa in patients with symptomatic heart failure and anemia, Circulation, 2008;117:526–35.
    Crossref | Pubmed
  26. Parissis JT, Kourea K, Panou F, et al., Effects of darbepoetin alpha on right and left ventricular systolic and diastolic function in anemic patients with chronic heart failure secondary to ischemic or idiopathic dilated cardiomyopathy, Am Heart J, 2008;155:751 e1–7.
    Crossref | Pubmed
  27. van Veldhuisen DJ, Dickstein K, Cohen-Solal A, et al., Randomized, double-blind, placebo-controlled study to evaluate the effect of two dosing regimens of darbepoetin alfa in patients with heart failure and anaemia, Eur Heart J, 2007;28:2208–16.
    Crossref | Pubmed
  28. Kourea K, Parissis JT, Farmakis D, et al., Effects of darbepoetin-alpha on quality of life and emotional stress in anemic patients with chronic heart failure, Eur J Cardiovasc Prev Rehabil, 2008;15:365–9.
    Crossref | Pubmed
  29. Palazzuoli A, Silverberg DS, Iovine F, et al., Effects of beta-erythropoietin treatment on left ventricular remodeling, systolic function, and B-type natriuretic peptide levels in patients with the cardiorenal anemia syndrome, Am Heart J, 2007;154:645 e9–15.
    Crossref | Pubmed
  30. Beck-da-Silva L, Piardi D, Soder S, et al., IRON-HF study: a randomized trial to assess the effects of iron in heart failure patients with anemia, Int J Cardiol, 2013;168:3439–42.
    Crossref | Pubmed
  31. Bolger AP, Bartlett FR, Penston HS, et al., Intravenous iron alone for the treatment of anemia in patients with chronic heart failure, J Am Coll Cardiol, 2006;48:1225–7.
    Crossref | Pubmed
  32. Toblli JE, Lombraña A, Duarte P, Di Gennaro F, Intravenous iron reduces NT-pro-brain natriuretic peptide in anemic patients with chronic heart failure and renal insufficiency, J Am Coll Cardiol, 2007;50:1657–65.
    Crossref | Pubmed
  33. Okonko DO, Grzeslo A, Witkowski T, et al., Effect of intravenous iron sucrose on exercise tolerance in anemic and nonanemic patients with symptomatic chronic heart failure and iron deficiency FERRIC-HF: a randomized, controlled, observer-blinded trial, J Am Coll Cardiol, 2008;51:103–12.
    Crossref | Pubmed
  34. Usmanov RI, Zueva EB, Silverberg DS, Shaked M, Intravenous iron without erythropoietin for the treatment of iron deficiency anemia in patients with moderate to severe congestive heart failure and chronic kidney insufficiency, J Nephrol, 2008;21:236–42.
    Pubmed
  35. Ponikowski P, van Veldhuisen DJ, Comin-Colet J, et al., Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiency, Eur Heart J, 2014 [Epub ahead of print].
    Crossref | Pubmed
  36. Iron in Congestive Heart Failure (iCHF). Available at: http://clinicaltrials.gov/ct2/show/NCT01837082?term=iCHF&rank=1 (accessed 17 September 2014).
  37. EFfect of Ferric carboxymaltose on Exercise Capacity in PaTients with iron deficiency and chronic Heart Failure (EFFECT-HF). Available at: http://clinicaltrials.gov/show/NCT01394562 (accessed 3 September 2014).